Some Diophantine Triples and Quadruples for Quadratic Polynomials

نویسنده

  • ANDREJ DUJELLA
چکیده

In this paper, we give some new examples of polynomial D(n)triples and quadruples, i.e. sets of polynomials with integer coefficients, such that the product of any two of them plus a polynomial n ∈ Z[X] is a square of a polynomial with integer coefficients. The examples illustrate various theoretical properties and constructions for a quadratic polynomial n which appeared in recent papers. One of the examples gives a partial answer to the question about number of distinct D(n)-quadruples if n is an integer that is the product of twin primes. 2000 Mathematics Subject Classification: 11C08, 11D99.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjugates of Diophantine Quadruples

Philip Gibbs Diophantine m-tuples with property D(n), for n an integer, are sets of m positive integers such that the product of any two of them plus n is a square. Triples and quadruples with this property can be classed as regular or irregular according to whether they satisfy certain polynomial identities. Given any such m-tuple, a symmetric integer matrix can be formed with the elements of ...

متن کامل

On the Exceptional Set in the Problem of Diophantus and Davenport

The Greek mathematician Diophantus of Alexandria noted that the numbers x, x + 2, 4x + 4 and 9x + 6, where x = 1 16 , have the following property: the product of any two of them increased by 1 is a square of a rational number (see [4]). Fermat first found a set of four positive integers with the above property, and it was {1, 3, 8, 120}. Later, Davenport and Baker [3] showed that if d is a posi...

متن کامل

On the number of Diophantine m-tuples

A set of m positive integers is called a Diophantine m-tuple if the product of any two of them is one less than a perfect square. It is known that there does not exist a Diophantine sextuple and that there are only finitely many Diophantine quintuples. On the other hand, there are infinitely many Diophantine m-tuples for m = 2, 3 and 4. In this paper, we derive asymptotic extimates for the numb...

متن کامل

Erdős-turán with a Moving Target, Equidistribution of Roots of Reducible Quadratics, and Diophantine Quadruples

ABSTRACT. A Diophantine m-tuple is a set A of m positive integers such that ab + 1 is a perfect square for every pair a, b of distinct elements of A. We derive an asymptotic formula for the number of Diophantine quadruples whose elements are bounded by x. In doing so, we extend two existing tools in ways that might be of independent interest. The Erdős-Turán inequality bounds the discrepancy be...

متن کامل

On the family of Diophantine triples { k − 1 , k + 1 , 16 k 3 − 4 k }

It is proven that if k ≥ 2 is an integer and d is a positive integer such that the product of any two distinct elements of the set {k − 1, k + 1, 16k − 4k, d} increased by 1 is a perfect square, then d = 4k or d = 64k−48k+8k. Together with a recent result of Fujita, this shows that all Diophantine quadruples of the form {k − 1, k + 1, c, d} are regular.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011